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Abstract. In this paper, we describe an algorithm that efficiently collect re-

lations in class groups of number fields defined by a small defining polynomial.
This conditional improvement consists in testing directly the smoothness of

principal ideals generated by small algebraic integers. This strategy leads to

an algorithm for computing the class group whose complexity is possibly as
low as L|∆K|

(
1
3

)
.

1. Introduction

The ideal class group of a number field is a finite abelian group and its computa-
tion is a major task in algorithmic algebraic number theory. The case of quadratic
number fields was firstly addressed by Shanks [Sha69, Sha72]. Thanks to the baby-
step–giant-step strategy and under the Generalized Riemann Hypothesis (GRH),

he reached an exponential runtime O(|∆K|
1
5 ), where ∆K denotes the absolute dis-

criminant of the considered number field.
Hafner and McCurley [HM89] then proposed an algorithm in heuristic subexpo-

nential time L|∆K|(
1
2 ,
√

2), but only in the restrictive case of imaginary quadratic
number fields. This L-notation is classical when presenting index calculus algo-
rithms with subexponential complexity. Given two constants α and c with α ∈ [0, 1]
and c ≥ 0, LN (α, c) is used as a shorthand for

exp
(
(c+ o(1))(logN)α(log logN)1−α) ,

where o(1) tends to 0 as N tends to infinity. We also encounter the notation LN (α)
when specifying c is undesired.

An extension of this latter algorithm to all number fields was the topic of Buch-
mann’s work [Buc90], assuming that the extension degree, arbitrary, is fixed. Then
he obtained a heuristic runtime L|∆K|(

1
2 , 1.7). Finally, Biasse and Fieker improved

this algorithm and achieved a subexponential complexity for all number fields, with-
out any restriction on the degree: a complexity L|∆K|(

2
3 + ε) in the general case1

and L|∆K|(
1
2 ) when the extension degree n satisfies n ≤ (log |∆K|)3/4−ε. Recently,

these complexities were reduced to L|∆K|
(

2α+1
5 , o(1)

)
for number fields in classes

Dn0,d0,α,γ with α > 3/4, and L|∆K|

(
1
2 ,

ω+1
2
√
ω

)
in the other cases — the classes D

are defined in [GJ16] and the complexities come from [Gél18].
In addition, there exists some conditional improvements when the defining poly-

nomial of the number field has good properties — namely small coefficients. Biasse
and Fieker [BF14] achieved an L|∆K|(a) complexity with a possibly as low as 1

3 ,
and this improvement has been widened in [GJ16] to a larger set of number fields.

1For an arbitrary small ε > 0.

1
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Contribution. In this paper, we focus on a conditional improvement based on the
smallness of the defining polynomial. Though ideal-reduction schemes enforce an
L|∆K|

(
1
2

)
complexity, the solution of the discrete logarithm problem in finite fields

in LQ
(

1
3

)
suggests that we can reach this value for class group computations too.

This is the aim of the sieving strategy. We first describe the algorithm and extend
the results obtained by Biasse in [Bia14]. Then we study its complexity, compare
it with the results of [Gél18] and exhibit the number fields for which this new
strategy offers a better complexity than ideal reductions. In addition, we provide
an algorithm for solving the Principal Ideal Problem by using techniques close to
the ones used for class group computations.

Outline. The article is organized as follows. In Section 2 we briefly explain how
this sieving strategy may speed up class group computation. Then Section 3 is
devoted to the description of the relation collection algorithm, while Section 4
gives the parameter choices together with the complexity analysis according to the
classes D. Section 5 summarizes where each algorithm — this one and the one
based on ideal reduction — is better than the other in order to give a new state
of the art of class group computation. Finally, the solution of the Principal Ideal
Problem based on this method is provided in Section 6.

2. Motivation

As it is explained in [Gél18, Section 2], computing class groups and regulators
in number fields is essentially based on the index calculus method. Within this
strategy, the part that determines the complexity is the relation collection, because
the linear-algebra step only leads to an additional constant factor in the exponent
— i.e., in the second constant in the L-notation. The relation collection step, as
its name suggests, consists in searching for many principal ideals that split over the
factor base B = {p1, . . . ,pN} composed of all prime ideals of norm below a bound
B > 0:

〈x〉OK =
∏

peii for x ∈ OK.

In the general case, without making any assumption on the number fields, the
ideal-reduction strategy performs best and leads to a complexity that is at least
L|∆K|

(
1
2

)
. However, there exist conditional improvements when the number field

is defined by a good polynomial, that is a polynomial having small height. Indeed,
in that case, the q-descent strategy described by Biasse and Fieker in [BF14] and
generalized in [GJ16] allows a complexity between L|∆K|

(
1
3

)
and L|∆K|

(
1
2

)
for all

number fields of small extension degree.
Our new idea that underlies this article is to generate the relations by testing

a lot of small principal ideals that are generated by algebraic integers of bounded
degree and coefficients. The norms of such elements depend on the two bounds used
for the degree and on the coefficients and the height of the defining polynomial.
This idea was already used in the Number Field Sieve [LLMP90]. Enge, Gaudry,
and Thomé [EG07, EGT11] extend this method to low-degree curves for solving the
discrete logarithm problem over such curves in Lqg

(
1
3

)
, where q is the cardinality

of the base field and g the genus of the curve.
Then, Biasse in [Bia14] applies the method in the context of class group com-

putations. His result only addresses very specific number fields K defined by a
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polynomial T such that

(1)
[
K : Q

]
≤ O(log |∆K|)α and logH(T ) ≤ O(log |∆K|)1−α

for an α in the open interval
(

1
3 ,

2
3

)
. In so doing, he was able to compute the

class group in time L|∆K|
(

1
3

)
assuming the Extended Riemann Hypothesis (ERH)

and under heuristics. We generalize here the sieving strategy to all number fields,
obtaining a complexity possibly as low as L|∆K|

(
1
3

)
.

This method has also been used by Buchmann, Jacobson, Neis, Theobald, and
Weber in [BJN+99] for practical enhancements. Indeed, the sieving strategy defi-
nitely outperforms ideal reduction in practice, especially for small-degree number
fields.

The q-descent strategy explained in [BF14], where elements with small coeffi-
cients are searched in lattices of smaller dimension, is, in a certain sense, another
way to use these small algebraic integers. However, our method appears easier to
understand and its complexity analysis is streamlined: we are able to provide ex-
plicitly the second constant in the L-notation, which does not sound that simple
for the q-descent. In addition, from a practical point of view, as the q-descent only
works in small degree

(
α ≤ 1

2

)
, our algorithm should outperform the q-descent,

since it does not require iterations nor lattice-reductions.

3. Deriving relations by sieving

In the following, we make use of the classification presented in [Gél18] based on
the classes D introduced in [GJ16]:

Definition 3.1 ([Gél18, Definition 3.1]). Let n0 > 1 be a real parameter arbitrarily
close to 1, d0 > 0, α ∈ [0, 1] and γ ≥ 1−α. The class Dn0,d0,α,γ is defined as the set
of all number fields K of discriminant ∆K that admit a monic defining polynomial
T ∈ Z[X] of degree n that satisfies:

1

n0

(
log |∆K|

log log |∆K|

)α
≤ n ≤ n0

(
log |∆K|

log log |∆K|

)α
and

d = logH(T ) ≤ d0(log |∆K|)γ(log log |∆K|)1−γ .(2)

For a fixed number field K in a class Dn0,d0,α,γ , the value α ∈ [0, 1] corresponds to
the extension degree so that it is precisely defined. For the second main parameter
γ ≥ 1 − α, special care should be taken: sometimes it costs too much to reduce
the defining polynomial. This issue is addressed in Section 5: given a number field
defined by a polynomial, we study the optimal strategy for computing the class
group depending on the parameters. Is the polynomial reduction necessary? Is it
better to use ideal-reduction or sieving?

Remark 3.2. We use the terminology “sieving strategy” because it closely corre-
sponds to the way to — efficiently — implement it. Theoretically, our algorithm
only consists in testing for smoothness a huge arithmetic progression of algebraic
integers until we have found sufficiently many relations.

The description of the algorithm we are going to introduce is clear and the algo-
rithm is easily understandable. Difficulties arise when we need to fix the parameters
such as the smoothness bound for the factor base and the bounds that describe the
sieving space in order to minimize the complexity. To fix the notation, we consider
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a number field K = Q(θ) of degree n and let T denote the defining polynomial of
which θ is a root.

Let B > 0 be the smoothness bound that must be determined. We fix the
factor base B = {p1, . . . ,pN} as the set of all prime ideals of OK whose norm
is below B. From the Landau Prime Ideal Theorem [Lan03], we know that its
cardinality satisfies

N = |B| = B
(
1 + o(1)

)
.

We describe the sieving space by fixing a bound t > 0 on the degree, together
with a bound S > 0 on the coefficients. Hence we use all the polynomials of degree
at most t with coefficients between −S and S. These are (2S + 1)t+1 polynomials,
but only half of them are of interest, as algebraic integers x and −x generate the
same ideal. Note that we may also avoid algebraic integers built from a reducible
polynomial in θ. Indeed, if x = x1 · x2, then the exponents of a relation produced
by x equal the sums of the exponents of relations produced by x1 and x2.

Given an algebraic integer x =
∑t
i=0 aiθ

i and denoting by A the polynomial
A(X) =

∑
aiX

i, the norm of the principal ideal 〈x〉 is given by

N
(
〈x〉
)

= NK/Q

(
x
)

= Res (A, T ) .

The bounds for the resultants displayed in [BL10, Theorem 7] allow us to provide
a bound on the field norm of an element given in standard representation. Thus,
thanks to the two bounds t on the degree and S on the coefficients, we can derive
an upper bound for the norm of the principal ideal 〈x〉:

(3) N
(
〈x〉
)
≤
√
t+ 1

n√
n+ 1

t
H(T )t Sn.

We also recalled the two heuristics used in [Gél18], as we also need them.

Heuristic 3.3 ([Gél18, Heuristic 4.4]). The probability P(x, y) that an ideal of
norm bounded by x is y-smooth satisfies

P(x, y) ≥ e−u(log u)(1+o(1)) for u =
log x

log y
.

Heuristic 3.4 ([Gél18, Heuristic 4.7]). There exists K negligible compared with |B|
such that collecting K ·|B| relations suffices to obtain a relation matrix that generates
the whole lattice of relations.

Assuming Heuristic 3.3, the previous bound on the norm offers a lower bound
on the probability P of B-smoothness of any principal ideal 〈x〉 belonging to the
sieving space. Then the (2S + 1)t+1 small ideals lead to (2S + 1)t+1 · P relations.
Assuming Heuristic 3.4, collecting N

(
1 + o(1)

)
relations suffices to derive the class

group. Therefore we want the following relation to be satisfied by our choice of
parameters:

(4) (2S + 1)t+1 · P = N
(
1 + o(1)

)
.

Remark 3.5. Note that making use of the weaker Heuristic 3.4, introduced in [GJ16],
is essential here. Indeed, the factor base may contain ideals of degree k > t, that
cannot be part of any relations derived from our settings. Because every ideal whose
norm is below the Bach bound has a degree smaller than log 12 + 2 log log |∆K|, we
know that sieving on degree-t polynomials suffices for our purposes, which was not
the case with the heuristic used before, where the relation matrix must have full
rank.
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To evaluate the cost of the sieving phase, we need to know the number of ideals
we test for smoothness: it is (2S + 1)t+1. We explain below that the cost of each
smoothness test is always negligible. Then the overall cost of the sieving phase is
given by (2S + 1)t+1 (1 + o(1)).

As the lowest final complexity is obtained when a balance is reached between
the cost of the relation collection and the cost of the linear-algebra phase, we also
want that

(5) (2S + 1)t+1 = Nω+1
(
1 + o(1)

)
,

because the linear algebra cost is in Nω+1 (see [BF14, Proposition 4.1]).
Before determining the parameters that minimize the complexity, we give an

outline of the strategy in Algorithm 1.

Algorithm 1 Deriving relations from small algebraic integers

Input: The factor base B, the degree bound t and the coefficient bound S.
Output: The relations stored.

1: for d from 1 to t do
2: for all (a0, . . . , ad) ∈ [−S, . . . , S]d+1 do
3: Fix x =

∑
aiθ

i and a = 〈x〉
4: Test the B-smoothness of a
5: if a is B-smooth then
6: Fix ei such that a =

∏
peii

7: Store the relation 〈x〉 =
∏

peii
8: end if
9: end for

10: end for

We describe in the subsequent sections how to set the parameters for the factor
base and the sieving space to achieve the best complexities. We fix n0 > 1, d0 > 0,
α ∈ [0, 1] and γ ≥ 1−α and let K be a number field that belongs to Dn0,d0,α,γ . We
also assume that we know a good defining polynomial T that satisfies

logH(T ) ≤ d0(log |∆K|)γ(log log |∆K|)1−γ .

Let θ be a primitive element of K that is a root of the defining polynomial T . As in
the discrete logarithm problem in finite fields, we need to distinguish several cases
according to the relative sizes of α and γ. However, the distinctions between the
various cases are not as precise as they are for the DLP: we consider small, medium
and large degrees and give the corresponding inequalities involving α and γ.

4. Complexity analyses

4.1. The case of medium degree. We begin by the medium case, which we
define by α and γ being of the same magnitude. This includes α ≈ γ ≈ 1

2 , but
covers a much wider range as follows from the analysis below. As already discussed
at the beginning of [Gél18, Section 3], the size of the defining polynomial plays a
role in the complexity: we only have the inequality γ ≥ 1− α, so that we have no
choice but to keep using both α and γ.

Given that we hope to find an algorithm with runtime L|∆K|
(

1
3

)
and given that

γ ≥ 1 − α (thus α + γ ≥ 1), we simply conjecture the existence of an algorithm
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with runtime L|∆K|
(
α+γ

3

)
and fix the size of the factor base B as the set of prime

ideals of norm at most

B =  L|∆K|

(
α+ γ

3
, cb

)
,

with cb > 0 to be determined. The notation  L is identical as the L introduced
earlier, except that we have removed the o(1), in order to consider constants:

 LN (α, c) = ec(logN)α(log logN)1−α
.

Thanks to Landau’s Prime Ideal Theorem [Lan03], we know that N = |B| =
L|∆K|

(
α+γ

3 , cb
)
. The sieving space is chosen to consist in all algebraic integers

x = A(θ), built as polynomials in θ, that satisfy
(6)

degA ≤ t = ct

(
log |∆K|

log log |∆K|

) 2
3 (α+γ)−γ

and H(A) ≤ S =  L|∆K|

(
2

3
(α+ γ)− α, cs

)
.

In particular, logH(A) ≤ cs(log |∆K|)
2
3 (α+γ)−α(log log |∆K|)1−( 2

3 (α+γ)−α). So these
two quantities are only well defined for 2

3 (α + γ) − γ ≥ 0 and 2
3 (α + γ) − α ≥ 0,

which defines the bounds of the medium-degree case.
According to Equation (3), this choice of parameters enables to bound the norm

of every principal ideal 〈x〉 in the sieving space by

(7) N
(
〈x〉
)
≤ L|∆K|

(
2

3
(α+ γ), n0cs + d0ct

)
.

We deduce from Heuristic 3.3 that a principal ideal generated by such an x is
B-smooth with probability

P ≥ L|∆K|

(
α+ γ

3
,

(α+ γ)(n0cs + d0ct)

3cb

)−1

.

The size of the sieving space is given by (2S+1)t+1 =  L|∆K|
(
α+γ

3 , csct
)
. As usual,

this estimation allows us to estimate the number of relations found by combining
the two previous results: the number of collected relations is expected to be

(2S + 1)t+1 · P = L|∆K|

(
α+ γ

3
, csct −

(α+ γ)(n0cs + d0ct)

3cb

)
.

With N = L|∆K|
(
α+γ

3 , cb
)

and the assumption of Heuristic 3.4 (see Equa-
tion (4)), we obtain

csct −
(α+ γ)(n0cs + d0ct)

3cb
= cb.

Another equation between the various constants stems from the balance between
the relation collection and the linear algebra, as stated by Equation (5). It boils
down to

csct = (ω + 1)cb.

From these two equations, we easily express ct in the other constants and obtain
a deg-2 equation in cb, depending on cs: 3ωcsc

2
b−d0(α+γ)(ω+1)cb−n0(α+γ)c2s = 0.

This expression allows us to infer the shape of cb, which is going to give us the final
complexity, depending on cs:

cb =
d0(α+ γ)(ω + 1) +

√
d2

0(α+ γ)2(ω + 1)2 + 12n0(α+ γ)ωc3s
6ωcs

.
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It only remains to minimize this quantity as a function of cs. It follows from a

straight analysis that the minimum is achieved for cs satisfying c3s =
2d2

0(α+γ)(ω+1)2

3n0ω
,

which leads to

cb =

(
4n0d0(α+ γ)2(ω + 1)

9ω2

) 1
3

.

Consequently, the runtime of our algorithm for computing the class group struc-
ture and an approximation of the regulator is

L|∆K|

(
α+ γ

3
,

(
4n0d0(α+ γ)2(ω + 1)4

9ω2

) 1
3

)
.

Remark 4.1. The first constant may be as low as 1
3 if γ reaches the lower bound

1− α, i.e., α+ γ = 1.

We also mention that in this case, our second constant is better than the one
found by Biasse in [Bia14].

This analysis however only holds when the two quantities 2
3 (α + γ) − γ and

2
3 (α+γ)−α are non-negative. These conditions offer the limits of our analysis and
can be rewritten as

1

3
(α+ γ) ≤ α ≤ 2

3
(α+ γ) ⇐⇒ γ

2
≤ α ≤ 2γ.

Therefore, it remains to treat the two complementary cases, when either the size
of the defining-polynomial height or the extension degree prevails.

4.2. The small-degree case: when 2α < γ. The first extreme case we study
is when the size of the defining-polynomial height outweighs the extension degree.
It corresponds to the left part of the diagrams displayed in [Gél18], where the
q-descent strategy works. In these cases, the extension degree satisfies

α <
γ

2
⇐⇒ α <

1

3
(α+ γ) .

We are able to reach a final complexity in L|∆K|
(
γ
2

)
for the relation collec-

tion. As α is relatively small — below γ
2 — we know that the defining-polynomial

reduction algorithm presented in [GJ16] runs in time L|∆K| (α), which is strictly

less than L|∆K|
(
γ
2

)
. Hence this reduction is always negligible compared with the

relation collection, so that it can be considered as a precomputation. According
to [GJ16, Corollary 3.3], we can also assume γ ≤ 1.

We fix the size of the factor base B by considering all the prime ideals having
norm below

B =  L|∆K|

(γ
2
, cb

)
,

and we have from Landau’s theorem that N = |B| = L|∆K|
(
γ
2 , cb

)
. The sieving

space is constructed as before, using all polynomials A that satisfy

(8) degA ≤ t = ct and H(A) ≤ S =  L|∆K|

(γ
2
, cs

)
.

These adjustments in the definition are motivated by the desire to minimize the
norm size. As the height of the defining polynomial is large, we bound the degree
of the algebraic integers to guarantee that the norm stays small.
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According to Equation (3), this choice of parameters enables to bound the norm
of every principal ideal 〈x〉 in the sieving space by

(9) N
(
〈x〉
)
≤ L|∆K| (γ, d0ct) .

Assuming Heuristic 3.3 allows us to have the following inequality satisfied by the
probability for a principal ideal generated by such an x to be B-smooth:

P ≥ L|∆K|

(
γ

2
,
d0γct
2cb

)−1

.

As the sieving-space cardinality is (2S+ 1)t+1 =  L|∆K|
(
γ
2 , cs(ct + 1)

)
, we obtain

the number of collected relations as before and Equation (4) results in cs(ct + 1)−
d0γct
2cb

= cb. Similarly Equation (5) leads to cs(ct+1) = (ω+1)cb. From an identical
approach as in the previous section, we find the optimal choices for the constants
and conclude that the runtime of our algorithm is

L|∆K|

(
γ

2
,

(
d0γ(ω + 1)2ct

2ω

) 1
2

)
.

Remark 4.2. The first constant is always between 1
3 and 1

2 : the upper bound is a
consequence of the precomputation made for finding the minimal-height defining
polynomial while the lower one comes from γ > 2

3 (α + γ) ≥ 2
3 . In the second

constant, the factor ct appears so that the complexity depends on the degree of
the polynomials we use for sieving. The minimal value is obtained for ct = 1, for a

runtime in L|∆K|

(
γ
2 ,
(
d0γ(ω+1)2

2ω

) 1
2

)
.

Remark 4.3. A possible alternative for the sieving may be to enlarge the sieving
space by allowing larger coefficients — always below S′ =  L|∆K| (γ − α, o(1)) — and

to consider only a random subset of size L|∆K|
(
γ
2 , cs(ct + 1)

)
of the sieving space.

Using the bound S′ does not affect Equation (9) and the complexity is preserved.

4.3. The large-degree case: when α > 2γ. In this last case, the extension
degree outweighs the size of the defining-polynomial height. It corresponds to the
right part of the diagrams displayed in [Gél18]. Here we have to work with the
input defining polynomial because finding the minimal one costs too much. As the
extension degree is large, we opt for sieving polynomials that have small coefficients
and large degrees.

We fix the size of the factor base B by considering all the prime ideals having
norm below

B =  L|∆K|

(α
2
, cb

)
,

and we have from Landau’s theorem that N = |B| = L|∆K|
(
α
2 , cb

)
. The sieving

space is constructed using all polynomials A that satisfy
(10)

degA ≤ t = ct

(
log |∆K|

log log |∆K|

)α
2

and H(A) ≤ S =  L|∆K| (0, cs) = (log |∆K|)cs .

According to Equation (3), this choice of parameters enables to bound the norm
of every principal ideal 〈x〉 in the sieving space by

(11) N
(
〈x〉
)
≤ L|∆K|

(
α, n0

(
cs +

α

4

))
.
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We deduce from Equation (11) and Heuristic 3.3 that the probability for a prin-
cipal ideal generated by such an x to be B-smooth satisfies

P ≥ L|∆K|

(
α

2
,
n0α(α+ 4cs)

8cb

)−1

.

Finally, an identical analysis enables to find the optimal choice for the constants.
The final runtime for our class group algorithm based on sieving strategy satisfies

L|∆K|

(
α

2
,

(
n0α(α+ 4cs)(ω + 1)2

8ω

) 1
2

)
.

Remark 4.4. The first constant is always between 1
3 and 1

2 since α > 2
3 (α+γ) ≥ 2

3 .
In the second constant, the constant cs appears which can be chosen arbitrarily

small. The minimal runtime thus becomes L|∆K|

(
α
2 ,
(
n0α

2(ω+1)2

8ω

) 1
2

)
.

Remark 4.5. Again, it is possible to enlarge the sieving space by allowing the degree

to be larger — always below t′ = ct

(
log |∆K|

log log |∆K|

)α−γ−ε
for ε > 0 arbitrarily small

— and to consider only a random subset of the sieving space of size L|∆K|
(
α
2 , csct

)
.

Using the bound t′ does not affect Equation (11) and the complexity is preserved.

5. Conclusion on sieving strategy

The complexity analyses we have derived in the previous sections assume that
we know a small defining polynomial T , that is a witness to the fact that K belongs
to the class D. We recall that the classes D satisfy

Dn0,dF ,α,γF ⊂ Dn0,d0,α,γ0
,

for n0, d0, dF > 0, 0 ≤ α ≤ 1 and 1 − α ≤ γF < γ0. To identify the best strategy
depending on the inputs, we consider a number field K defined by a polynomial T
such that

1

n0

(
log |∆K|

log log |∆K|

)α
≤ deg T ≤ n0

(
log |∆K|

log log |∆K|

)α
and

logH(T ) ≤ d0(log |∆K|)γ0(log log |∆K|)1−γ0 .

It is easily verified that K belongs to Dn0,d0,α,γ0 . In addition we introduce γF
and dF so that γF is the minimal γ such that K ∈ Dn0,dF ,α,γ . Thus we consider
two different classes to which K belongs, namely Dn0,dF ,α,γF and Dn0,d0,α,γ0

; note
that

K ∈ Dn0,dF ,α,γF ⊂ Dn0,d0,α,γ0 .

Given the number field K defined by the polynomial T as inputs, we study the
different options for computing the class group and give the optimal strategy. Let
us first look at the medium-degree case, where γ0

2 ≤ α ≤ 2γ0. Necessarily, we have

α ≥ α+γ0

3 ≥ 1
3 .

• When α ≤ 1
2 , as γ0 ≤ 2α, we have α+γ0

3 ≤ 1
2 and sieving is the best strategy.

• When 1
2 < α ≤ 3

4 , the sieving strategy remains optimal as long as α+γ0

3 ≤ 1
2 .

Indeed, beyond this bound, the ideal-reduction strategy becomes less costly
and should be preferred. This happens as soon as γ0 ≥ 1.
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• Similarly, for 3
4 < α ≤ 1, the sieving strategy remains optimal as long as

α+γ0

3 ≤ 2α+1
5 . Above this bound, the ideal-reduction strategy becomes the

best option. This happens as soon as γ0 ≥ 4
5 .

The large-degree case is easier to deal with. Provided that α > 2γ0, we know
that the sieving strategy results in an algorithm with runtime L|∆K|

(
α
2

)
, between

L|∆K|
(

1
3

)
and L|∆K|

(
1
2

)
, as α > 2γ0 implies that α ≥ 2(α+γ0)

3 ≥ 2
3 . This is always

the best option.

The small-degree case is when defining-polynomial reduction plays a role. Indeed,
we know that its cost is L|∆K|(α) while the sieving strategy runs in time L|∆K|

(
γ
2

)
.

Because α < γ0

2 , we can always perform this reduction as a precomputation. It
allows to find the smallest-height defining polynomial and so the minimal γF . This
reduction has two outcomes:

• If γF
2 < α, then the sieving strategy has a complexity in L|∆K|

(
α+γF

3

)
,

which is negligible compared to the cost of the reduction, so that the final
runtime is L|∆K| (α). This can only happens when α > 1

3 , since α+γF ≥ 1.
• If γF

2 > α, then the sieving strategy has a complexity that outweighs the

cost of the reduction, so that the final runtime is L|∆K|
(
γF
2

)
. This value

is between L|∆K|
(

1
3

)
and L|∆K|

(
1
2

)
, as the reduction algorithm returns

a polynomial such that γF ≤ 1 — this is a direct consequence of [GJ16,

Corollary 3.3] — and because γF > 2α implies that γF ≥ 2(α+γ0)
3 ≥ 2

3 .

This is the only option when α < 1
3 .

The results of this analysis are summarized in Table 1. We also give a new
diagram for the complexities in Figure 1.

Cond. on α Cond. on γ Strategy Complexity

α ≤ 1
2

γ0 ≤ 2α Sieving (MD) L|∆K|

(
α+γ0

3

)
2α < γF ≤ γ0 Pol. Red. & Sieving (SD) L|∆K|

( γF
2

)
γF < 2α < γ0 Pol. Red. & Sieving (SD) L|∆K| (α)

α > 1
2

2γ0 ≤ α Sieving (LD) L|∆K|
(
α
2

)
α+γ0

3
≤ max

(
1
2
, 2α+1

5

)
Sieving (MD) L|∆K|

(
α+γ0

3

)
α+γ0

3
> max

(
1
2
, 2α+1

5

)
Ideal Reduction L|∆K|

(
max

(
1
2
, 2α+1

5

))
Table 1. Choice of the strategy depending on the input parameters.

6. Application to Principal Ideal Problem

In addition to the step forward for class group computations, our results allow us
to improve the resolution of another problem: the Principal Ideal Problem (PIP).
It consists in finding a generator of an ideal, assuming it is principal. The Short
Principal Ideal Problem (SPIP) follows from the PIP by adding the assumption that
there exists a small generator. The SPIP is the base of several Fully Homomorphic
Encryption schemes inspired by the work of Gentry [Gen09] such as the FHE scheme
presented by Smart and Vercauteren at PKC 2010 [SV10] and the multilinear map
scheme presented by Garg, Gentry, and Halevi at EuroCrypt in 2013 [GGH13].
Solving the SPIP is a two-stage process that consists of first solving the underlying
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L|∆K|
(
max

(
α, γF2

))
L|∆K|

(
α+γ0

3

)
L|∆K|

(
α
2

)

a

0

1
3

1
2

3
5

0 1
4

1
3

1
2

2
3

3
4 1 α

Figure 1. Complexity obtained with our sieving strategy.

PIP (on which we focus here), if successful followed by attempts to reduce the
generator found to a short one (see [CDPR16] for instance). Finding a generator of a
principal ideal, and even testing the principality of an ideal, are difficult problems in
algorithmic number theory, as described in detail in [Coh93, Chapter 4] and [Thi95,
Section 7].

The general strategy is similar to the one used for the Discrete Logarithm Prob-
lem in finite fields. Indeed, for finding the logarithm of an element, two steps are
distinguished: first, we find the logarithms of many small elements; second, we
express our target element using these small elements and recover its logarithm.
It is the same here with our ideal a, assumed to be principal. First, we compute
the matrix of relations as for class group computations, keeping track of the small
elements we have sieved with. Second, we find an ideal b that is in the same class
as a and that splits over the factor base. Then, linear algebra allows us to recover
a generator of b thanks to the relation matrix and finally, we can solve the PIP.

6.1. The descent algorithm. We first briefly outline the algorithm without fixing
the parameters. Indeed, as for class group computations, the optimal parameters
choices are derived from the complexity analyses, depending on the number-field
exponents α and γ. In order to bootstrap the descent, we start with a classical
BKZ-reduction to obtain an ideal of reasonable norm. Indeed, as the input ideal
a is fixed — the one for which we want a generator — it can have an arbitrarily
large norm. All the ideal reductions are performed on the lattice built from the
coefficient embedding ς(a), as it is described in [BEF+17, Section 2.2]. The block-
size is fixed so that the complexity of the reduction is strictly below the overall
complexity of the algorithm, as it is done in [Gél18, Section 5]. Then the descent
consists in a succession of ideal reductions and smoothness tests so that the norms
of all ideals involved decrease progressively until they reach the lower bound, given
by the smoothness bound used in the class group computations. We make use of
the same result as in [Gél18] for the lattice reductions:

Theorem 6.1 ([Gél18, Theorem 4.3]). The smallest vector v output by the BKZ
algorithm with block-size β has a norm bounded by

‖v‖ ≤ β
n−1

2(β−1) · (detL)
1
n .
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The algorithm runs in time Poly(n, log ‖B0‖)
(

3
2

)β/2+o(β)
, with B0 the input basis.

We now fix the parameters for a degree-n number field K that belongs to a
class Dn0,d0,α,γ with γ

2 ≤ α ≤ 2γ. We know that the final complexity is given by

L|∆K|
(
α+γ

3

)
, assuming this first constant is small enough — say below 1

2 . Let us

write k = α+γ
3 for the sake of simplicity. A pattern of the descent is displayed in

Figure 2.

The initial reduction. Let a be the ideal, assumed principal, for which we search
for a generator. We may also assume that it is prime, otherwise it suffices to factor
it and to work with the prime ideals, which have smaller norms. We can always
represent this ideal with its HNF. We obtain an n×nmatrix whose largest coefficient
is at most the norm of the ideal N (a).

The first reduction consists in performing a BKZ-reduction on the n-dimensional
lattice ς(a) with block-size β = (log |∆K|)k. It permits to exhibit a small vector

v that satisfies ‖v‖ ≤ β
n−1

2(β−1)N (a)
1
n , as det ς(a) = N (a) (see Theorem 6.1). The

cost of this lattice reduction is L|∆K|
(
k, o(1)

)
, provided that the normN (a) satisfies

logN (a) ≤ L|∆K| (k − ε) for ε > 0. Therefore, the principal ideal generated by the
algebraic integer x0 ∈ a corresponding to the vector v ∈ ς(a) has its norm bounded

by (n+ 1)n ·H(T )n · β
n(n−1)
2(β−1)N (a) (using the same technique as for Equation (3)).

Finally, denoting by a(0) the unique integral ideal such that 〈x0〉 = a · a(0), we
obtain the following upper bound:

N
(
a(0)

)
≤ L|∆K| (α+ γ, n0d0) = L|∆K| (3k, n0d0) .

As we have mentioned, we alternate lattice reductions and smoothness tests.
For keeping a complexity in L|∆K|(k), we are going to test the ideal a(0) for
L|∆K|(2k, s0)-smoothness, for s0 > 0 to be determined. Using ECM algorithm

(see [Gél18, Appendix A]), the cost for a single test is L|∆K|
(
k,
√

2ks0

)
, while the

assumption of Heuristic 3.3 asserts that the probability for a(0) to be L|∆K|(2k, s0)-

smooth is lower bounded by L|∆K|

(
k, kn0d0

s0

)−1

. First, this implies that we need to

test on average L|∆K| (k) ideals before finding one that is smooth. We then make
use of the randomization process used by Biasse and Fieker in [BF14]. It consists in
considering randomized ideals that are products of a with random power-products
of small prime ideals — the ones in the factor base. Clearly, it offers sufficiently
many choices for testing L|∆K| (k) ideals. Second, the total runtime for the smooth-
ness tests is given by

L|∆K|

(
k,
kn0d0

s0
+
√

2ks0

)
,

which is minimal for s3
0 = 2k(n0d0)2, leading to a complexity of

L|∆K|

(
k,

(
9

2
k2n0d0

) 1
3

)
.

Subsequent steps. At the beginning of the i-th step, we have an ideal a(i)

whose norm is upper bounded by L|∆K|
(
k
(
1 + 1

2i

)
, si
)
. This time, we are go-

ing to perform the lattice reduction over a sublattice of ς
(
a(i)
)

of dimension d =

cd

(
log |∆K|

log log |∆K|

)δ
, for 0 ≤ δ ≤ α and cd > 0 to be determined. The reason to look
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a The input ideal

L a ·
∏
i p

ei
ji

x0 a(0) a(0) =
∏
j a

(0)
j

L|∆K|(k)× ς

ς−1

Randomization

Lattice reduction

a
(0)
a1

N
(
a

(0)
a1

)
≤ L|∆K|(2k)

L a
(0)
a1 ·

∏
i p

ei
ji

x1 a
(1)
a1

a
(1)
a1 =

∏
j a

(1)
a1,j

L|∆K|(k)× ς

ς−1

Randomization

Lattice reduction

a
(l−1)
a1,...,al

L a
(l−1)
a1,...,al ·

∏
i p

ei
ji

xl a
(l)
a1,...,al a

(l)
a1,...,al L|∆K|(k)-sm.

L|∆K|(k)× ς

ς−1

Randomization

Lattice reduction

l =
⌈
log2

(
1
k log

(
log |∆K|

log log |∆K|

))⌉
steps

Figure 2. The descent algorithm for the medium-degree case.

at a sublattice is that it allows to reduce the norms of the ideals that are involved,
which is exactly what we want for the descent.

The BKZ-reduction on this sublattice provides an algebraic integer xi ∈ a(i) and
so an integral ideal a(i+1) such that 〈xi〉 = a(i) · a(i+1). The upper bound we get
on the norm of a(i+1), according to Theorem 6.1, is

L|∆K|(α) ·L|∆K| (γ + δ, d0cd) ·L|∆K|(α+δ−k) ·L|∆K|

(
α+ k

(
1 +

1

2i

)
− δ, n0si

cd

)
.

This quantity is minimal when γ+δ = α+k
(
1 + 1

2i

)
−δ ⇐⇒ δ = α−k

(
1 + 1

2i+1

)
and c2d = n0si

d0
, which results in the following upper bound for the norm:

L|∆K|

(
k

(
2 +

1

2i+1

)
, 2
√
n0d0si

)
.
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Again, we want to test this ideal for smoothness and we fix the smoothness bound
to L|∆K|

(
k
(
1 + 1

2i+1

)
, si+1

)
. This time, the cost for a single ECM is negligible,

as given by L|∆K|
(
k
2

(
1 + 1

2i+1

))
. The total cost is then inferred from the number

of ideals we have to test. Using the same process as for the initial reduction and
assuming Heuristic 3.3, this number is

L|∆K|

(
k,

2k
√
n0d0si
si+1

)
.

The final step. We fix l =
⌈
log2

(
1
k log

(
log |∆K|

log log |∆K|

))⌉
. Thus, at step l, we

have ideals that are L|∆K|
(
k
(
1 + 1

2l

)
, sl
)
-smooth. However, by definition of the

L-notation,

logL|∆K|

(
k

(
1 +

1

2l

)
, sl

)
≤ sl(log |∆K|)k(log log |∆K|)1−k

×
(

log |∆K|
log log |∆K|

)1/ log
(

log |∆K|
log log |∆K|

)

︸ ︷︷ ︸
= e=exp(1)

(
1 + o(1)

)
,

so that we have the inequality L|∆K|
(
k
(
1 + 1

2l

)
, sl
)
≤ L|∆K| (k, e · sl).

Remark 6.2. More precisely, we can go further and get rid of the constant e. Indeed,
for every ε > 0, if Cε denotes the smallest integer larger than log(1 + ε)−1, then at
step Cε · l, we only consider ideals that are L|∆K| (k, (1 + ε)sl)-smooth.

In the end, we want all the ideals involved to have a norm below the smoothness
bound we have used for class group computation, i.e.,

(12) e · sl ≤ cb =

(
4k2n0d0(ω + 1)

ω2

) 1
3

.

Our approach is to balance the cost of all steps, except the initial one: each one

costs L|∆K|

(
k,
(
4k2n0d0y

) 1
3

)
, for a constant y > 0 to be determined. Hence we

have, for all i,

2k
√
n0d0si
si+1

= 4k2n0d0y ⇐⇒ si+1 =
√
si ·
(

4k2n0d0

y2

) 1
6

.

We deduce that

sl = s
1

2l

0 ·
(

4k2n0d0

y2

) 1
6 ·(1+ 1

2 +···+ 1

2l−1 )

=

(
s0y

2
3

(4k2n0d0)
1
3

) 1

2l
(

4k2n0d0

y2

) 1
3

=

(
4k2n0d0

y2

) 1
3 (

1 + o(1)
)
.

Then, Equation (12) can be rewritten as e
(

4k2n0d0

y2

) 1
3 ≤

(
4k2n0d0(ω+1)

ω2

) 1
3

,

i.e., y2 ≥ e3ω2

ω+1 . As the number of steps is polynomial in log |∆K|, the total cost of
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the l steps of the descent is L|∆K|

(
k,
(
4k2n0d0y

) 1
3

)
, with y2 = e3ω2

ω+1 . It outweighs

the initial reduction, because 4y > 9
2 for ω ≥ 2.

Remark 6.3. We need to bound the numbers of ideals involved in order to be sure
of our final complexity. At each step, we spend time L|∆K|(k) for the smoothness
tests. It follows that the number of ideals in the decomposition is bounded by

O

((
log |∆K|

log log |∆K|

)k)
. During the descent, the number of ideals is then multiplied by

this factor at each step. Finally, the number of ideals at step l is quasi-polynomial

O

((
log |∆K|

log log |∆K|

)k)l
. In Figure 2, indices have been added to the ideals to illustrate

this.

At this point, the only remaining part consists in finding out how to decompose
these ideals over the principal ideals collected for building the relation matrix. This
is done by solving a linear system MX = Y , where M is the relation matrix and Y
the valuations vector of the smooth ideal. To be sure that this system has a solution,
we need to have a relation matrix of almost-full rank. By this unusual term, we
only mean that we want all ideals in the factor base involved in the relations, except
the ones whose degree is larger than the bound ct. Indeed, they do not appear in
a relation because of the parameters we use, but we do not care as they do not
arise either in the descent process — this is a consequence of the dimensions of the
sublattices that we use. The runtime of this part is L|∆K| (k, 2cb) as the matrix of
relations is already in HNF.

Finally, we also have y < (ω+1)4

ω2 , which means that the complexity for solving
the Principal Ideal Problem is the same as the complexity obtained for class group
computation. However, we have analyzed the runtime of the descent for the case
when the matrix of relations is known.

Remark 6.4. Two improvements can be made to reduce the complexity. First, as
explained in Remark 6.2, the constant e can be replaced by any other constant larger
than and arbitrarily close to 1. Second, if we are only interested in solving the PIP,
then the computation of the regulator and the class group structure are useless.
Hence, the linear-algebra step boils down to solving a linear system over Z, which
can be performed in time L|∆K| (k, ωcb) using a Las-Vegas algorithm described by
Storjohann in [Sto05]. Then, we can adjust all our parameters replacing ω+1 by ω.
Finally, these enhancements lead to a final complexity for the PIP of

L|∆K|

(
k,

(
4k2n0d0ω

4

(ω − 1)2

) 1
3

)
.

Remark 6.5. The descent strategy for solving the Principal Ideal Problem is also
treated in detail in [BEF+17]. It is applied in the context of the cryptanalysis of
a Fully Homomorphic Encryption Scheme over prime-power cyclotomic fields. The
interested reader can find more details there.

6.2. The large-degree case. For the present large-degree case, the approach is
similar to the previous case, the only difference being the parameters choice. This
time, α > 2γ and we denote by k the first constant of the class group complexity,
i.e., k = α

2 .
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We perform the first reduction using a block-size β = cβ(log |∆K|)k. It still costs

L|∆K|
(
k, o(1)

)
and gives rise to an algebraic integer x0 and an integral ideal a(0)

such that 〈x0〉 = a · a(0). The norm of a(0) satisfies

N
(
a(0)

)
≤ L|∆K|

(
2α− k, n

2
0

2cβ

)
= L|∆K|

(
3k,

n2
0

2cβ

)
.

We make use of the same randomization process as in the medium-case and

obtain a L|∆K| (2k, s0)-smooth ideal in time L|∆K|

(
k,
(

9k2n2
0

4cβ

) 1
3

)
, for s3

0 =
kn4

0

2c2β

chosen to minimize this cost.
The subsequent steps begin with an ideal of norm less than L|∆K|

(
k
(
1 + 1

2i

)
, si
)
.

Then, by fixing δ = k
(
1 + 1

2i+1

)
, we obtain an ideal a(i+1) such that is norm is

upper-bounded by

L|∆K|

(
k

(
2 +

1

2i+1

)
,
n0si
cd

)
.

so that, assuming Heuristic 3.3, we can find a L|∆K|
(
k
(
1 + 1

2i+1

)
, si+1

)
-smooth

ideal in time

L|∆K|

(
k,
kn0si
cdsi+1

)
.

In the same way, setting l =
⌈
log2

(
1
k log

(
log |∆K|

log log |∆K|

))⌉
implies that after step l,

the ideals involved are L|∆K|(k, e · sl)-smooth; here we want e · sl to be smaller
than cb.

Let y > 0 be a constant such that, at each step, the runtime of the smoothness
tests is below L|∆K| (k, y). That means that for all i, it is the case that kn0si

cdsi+1
≤ y.

Then, by fixing cd = kn0

y ·
(
es0
cb

) 1
l

and si+1 = si ·
(
cb
es0

) 1
l

, the previous equation is

satisfied, resulting in

sl = s0 ·
(
cb
es0

)
⇐⇒ e · sl = cb.

As y > 0 can be chosen arbitrarily small, each step has a runtime in L|∆K|
(
k, o(1)

)
and the initial-reduction cost can also be chosen that small, for cβ sufficiently large.
The remaining part consisting in solving the linear system works in the same way
as for the previous case and we can conclude that the complexity of our algorithm
for solving the PIP is the same as the complexity of the class group computation.
Again, Remark 6.4 holds so that we can reduce the complexity to

L|∆K|

(
k,

(
k2n0ω

2

2(ω − 1)

) 1
2

)
.

6.3. The small-degree case. Again, we only give a brief summary of the descent.
Here we have 2α < γ and k denotes γ

2 .

The initial BKZ-reduction provides an ideal of norm below L|∆K| (α+ γ, n0d0)

in time L|∆K|
(
k, o(1)

)
. We can find an ideal that is L|∆K| (k + α, s0)-smooth in

time L|∆K|

(
k, kn0d0

s0

)
as the cost of a single application of ECM is negligible —

because k+α
2 < k.
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Then, every subsequent step takes as input an ideal of norm upper bounded
by L|∆K|

(
k + α

2i , si
)
. Then, looking for a small vector in the sublattice of di-

mension d = cd

(
log |∆K|

log log |∆K|

) α

2i+1

leads to a new ideal whose norm is smaller than

L|∆K|
(
2k + α

2i+1 , d0cd
)
. Again we expect, assuming Heuristic 3.3, to find one that

is L|∆K|
(
k + α

2i+1 , si+1

)
-smooth in time L|∆K|

(
k, kd0cd

si+1

)
.

At final step l =
⌈
log2

(
1
α log

(
log |∆K|

log log |∆K|

))⌉
, we have L|∆K|(k, e · sl)-smooth

ideals and we want e · sl to be smaller than cb =
(
kd0ct
ω

) 1
2 . Note that, at this point,

d = cde
(
1 + o(1)

)
for the same reason as above. Hence cd may be as small as 1

e and
the cost of the final smoothness test is lower-bounded by

L|∆K|

(
k,

kd0

e · sl

)
≥ L|∆K|

(
k,
kd0

cb

)
= L|∆K|

(
k,

(
kd0ω

ct

) 1
2

)
.

This last smoothness test dominates the overall complexity of the descent phase,
as we can always choose cd and xi such that the runtimes of the other smoothness
tests become arbitrarily small. In addition, this part is dominated by the class

group computation: indeed,
(
kd0ω
ct

) 1
2 ≤ (ω + 1)

(
kd0ct
ω

) 1
2 because ct ≥ 1 > w

w+1 .

Again, we can improve this algorithm as explained in Remark 6.4 and finally get a
complexity of

L|∆K|

(
k,

(
kd0ctω

2

ω − 1

) 1
2

)
.

Remark 6.6. Thanks to this precise analysis, we are able to derive a precise complex-
ity estimate of the attack presented in [BEF+17]. Indeed, prime-power cyclotomic
fields — together with their totally real subfields — asymptotically belong to the
class D1,0,1,1. Then the result stated at the very end of Section 6.2 implies that the
complexity of this attack can be as low as

L|∆K|

(
1

2
,

ω

2
√

2(ω − 1)

)
.

Taking ω = log2 7, we obtain a runtime for our attack of

L|∆K|

(
1

2
, 0.738

)
= 21.066·n

1
2 logn.
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Laboratoire de Mathématiques de Versailles, UVSQ, CNRS, Université Paris-Saclay,
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